1. TUJUAN [KEMBALI]
Penulisan di blog ini bertujuan untuk:
- Dapat membuat dan mensimulasikan TUGAS SENSOR TERMAL berupa RANGKAIAN PENDINGIN AIR OTOMATIS menggunakan NTC.
- Dapat memahami TEORI dan PRINSIP KERJA dari RANGKAIAN PENDINGIN AIR OTOMATIS.
2. ALAT DAN BAHAN [KEMBALI]
1. Battery
Berfungsi untuk mensuplai tegangan pada rangkaian.
2. Probe Voltage
Berfungsi untuk mendeteksi apakah pada sumber yang di uji terdapat tegangan atau tidak. Bisa menguji tegangan AC serta tegangan DC.
3. Voltmeter
Difungsikan guna mengukur besarnya tegangan listrik yang terdapat dalam suatu rangkaian listrik. Dimana, untuk penyusunannya dilakukan secara paralel sesuai pada lokasi komponen yang sedang diukur.
4. Power Supply
Power Supply atau dalam bahasa Indonesia disebut dengan Catu Daya adalah suatu alat listrik yang dapat menyediakan energi listrik untuk perangkat listrik ataupun elektronika lainnya.
BAHAN :
1. Resistor
-
5VDC Operating voltage
-
I/O pins are 5V and 3.3V compliant
-
Range: Up to 20cm
-
Adjustable Sensing range
-
Built-in Ambient Light Sensor
-
20mA supply current
-
Mounting hole
Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch).
Konfigurasi Pin :
Motor DC digunakan sebagai actuator (output) dari rangkaian. Motor DC(Fan) ini berfungsi untuk mendingankan mesin yang melebihi suhu tertentu.
Pin 1 : Terminal 1
Pin 2: Terminal 2
Catatan: Masing masing terminal jika dipasang terbalik akan menghasilkan putaran yang terbalik juga
Spesifikasi :
LED berfungsi sebagai lampu indikator.
Datasheet LED
- Temperatur kerja: -50 C s/d +80 C
- Tegangan kerja: 12V (Max. 15V)
- Arus kerja: 6 Ampere (dapat operasi dibawah 6 A)
- Ukuran: 40x40x3.8 mm
- Tekanan saat pemasangan: max 98 N/cm2
Berfungsi sebagai keran yang digerakan oleh energi listrik
Spesifikasi :
Material: Metal + plastik
Variasi Voltage: AC 220V DAN AC/DC 12V (Optional)
Ukuran Inlet and outlet: 1/2 inchi
Operation mode: normally closed
Kegunaan: air dan fluida viskositas rendah
3. DASAR TEORI [KEMBALI]
- Resistor
Resistor adalah komponen elektronika pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian elektronika. Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Resitor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm (V = I.R ).
- Dioda
Dioda adalah komponen yang terbuat dari bahan semikonduktor dan
mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi
menghambat arus listrik dari arah sebaliknya. Sebuah Dioda dibuat dengan
menggabungkan dua bahan semi-konduktor tipe-P dan semi-konduktor
tipe-N. Ketika dua bahan ini digabungkan, terbentuk lapisan kecil lain
di antaranya yang disebut depletion layer. Ini karena lapisan tipe-P memiliki hole
berlebih dan lapisan tipe-N memiliki elektron berlebih dan keduanya
mencoba berdifusi satu sama lain membentuk penghambat resistansi tinggi
antara kedua bahan seperti pada gambar di bawah ini. Lapisan penyumbatan
ini disebut depletion layer.
Ketika tegangan positif diterapkan ke Anoda dan tegangan negatif diterapkan ke Katoda, dioda dikatakan dalam kondisi bias maju. Selama keadaan ini tegangan positif akan memompa lebih banyak hole ke daerah tipe-P dan tegangan negatif akan memompa lebih banyak elektron ke daerah tipe-N yang menyebabkan depletion layer hilang sehingga arus mengalir dari Anoda ke Katoda. Tegangan minimum yang diperlukan untuk membuat dioda bias maju disebut forward breakdown voltage.
Jika tegangan negatif diterapkan ke anoda dan tegangan positif diterapkan ke katoda, dioda dikatakan dalam kondisi bias terbalik. Selama keadaan ini tegangan negatif akan memompa lebih banyak elektron ke material tipe-P dan material tipe-N akan mendapatkan lebih banyak hole dari tegangan positif yang membuat depletion layer lebih besar dan dengan demikian tidak memungkinkan arus mengalir melaluinya. Kondisi ini hanya terjadi pada dioda yang ideal, kenyataannya arus yang kecil tetap dapat mengalir pada bias terbalik dioda.
Dioda dapat dibagi menjadi beberapa jenis:
1. Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.
2. Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.
3. Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan.
4. Dioda Photo yang berfungsi sebagai sensor cahaya.
5. Dioda Schottky yang berfungsi sebagai Pengendali.
Diode Type | Pinouts | Symbol |
---|---|---|
Rectifier Diode | ||
Zener Diode | ||
Schottky Diode |
*Dioda Schottky biasanya berukuran lebih besar dibandingkan dengan dioda penyearah dan memiliki ciri fisik yang sama
Untuk menentukan arus zenner berlaku persamaan:
- Transistor
Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.
1. Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.
2. Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.
Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal.
Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor.
Rumus transistor NPN:
Grafik Titik Saturasi Pada Daerah Kerja Transistor
Grafik Titik Saturasi Pada Garis Beban Transistor
IC OP AMP
Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.
Inverting Amplifier
Op-Amp memiliki beberapa karakteristik, diantaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)
Grafik input dan output op amp |
- NTC
- Infrared
Dari grafik dapat disimpilkan bahwa semakin jauh jarak benda maka semakin kecil output nya, dan begitu juga sebaliknya.
- LED
LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara
kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu
kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan
cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke
Katoda.
Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P)
menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan
berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang
bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole
akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).
Tegangan Maju LED
Relay
Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan
merupakan komponen Electromechanical (Elektromekanikal) yang terdiri
dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal
(seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip
Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus
listrik yang kecil (low power) dapat menghantarkan listrik yang
bertegangan lebih tinggi.
Terdapat besi atau yang disebut dengan nama iron core dililit oleh
sebuah kumparan yang berfungsi sebagai pengendali. Sehingga ketika
kumparan coil diberikan arus listrik maka akan menghasilkan gaya
elektromagnet. Gaya tersebut selanjutnya akan menarik armature untuk
pindah posisi dari normally close ke normally open. Dengan demikian
saklar menjadi pada posisi baru normally open yang dapat menghantarkan
arus listrik. Ketika armature sudah tidak dialiri arus listrik lagi maka
ia akan kembali pada posisi awal, yaitu normally close.
Fitur:
1. Tegangan pemicu (tegangan kumparan) 5V
2. Arus pemicu 70mA
3. Maksimum beban AC 10A @ 250/125V
4. Maksimum baban DC 10A @ 30/28V
5. Switching maksimum 300 operasi/menit
Motor (FAN)
Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).
Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.
- Penguat Non-inverting (Op Amp)
Rangkaian penguat inverting maupun non-inverting biasanya menggunakan IC Op-Amp 741.
- Pembagi Tegangan
- Selenoid Valve
Prinsip kerja dari solenoid valve yaitu katup listrik yang mempunyai koil sebagai penggeraknya dimana ketika koil mendapat supply tegangan maka koil tersebut akan berubah menjadi medan magnet sehingga menggerakan piston pada bagian dalamnya ketika piston bertekanan yang berasal dari supply (service unit), pada umumnya solenoid valve pneumatic ini mempunyai tegangan kerja 100/200 VAC namun ada juga yang mempunyai tegangan kerja DC4. Percobaan
- Peltier
4. PROSEDUR PERCOBAAN [KEMBALI]
1) Buka aplikasi proteus
2) Pilih komponen yang dibutuhkan, pada rangkaian ini dibutukan komponen led, Battery, Infrared NTC, OPAMP, Relay, Motor, transistor NPN, resistor, peltier, DC Fan
3) Rangkai setiap komponen menjadi rangkaian yang diinginkan
4) Ubah spesifikasi komponen sesuai kebutuhan
5) Jalankan simulasi rangkaian.
5. RANGKAIAN SIMULASI [KEMBALI]
Saat suhu pada NTC > 14 C dan IR sensor mendeteksi gelas yang mendekati
Saat suhu pada NTC < 15 C dan IR sensor tidak mendeteksi gelas yang mendekati
Prinsip Rangkaian Pendeteksi Gelas (IR Sensor) :
Saat Gelas mendekati sensor (logika 1)
Saat Gelas mendekati sensor (logika 1) maka tegangan pada output IR sensor sebesar 5V masuk ke base transistor Q5 yang mana akan mengaktifkan VBE transistor Q5 (karena lebih besar dari tegangan yang dibutuhkan untuk mengaktifkan VBE transistor sebesar 0.76V). Karena aktifnya transistor maka arus dari supply ke relay kemudian ke kolektor Q5 lalu ke emitor Q5 selanjutnya ke ground dengan adanya arus di relay maka switch dari relay akan bergerak ke kiri (on).yang menyebabkan terhubungnya arus dari supply ke selenoid valve lalu ke ground. Sehingga solenoid valve hidup.
Saat Gelas tidak mendekati sensor (logika 0)
Saat Gelas tidak mendekati sensor (logika 0) maka tidak ada
tegangan pada output IR sensor sehingga transistor Q5 tidak aktif,
yang mengakibatkan arus dari supply ke relay namun tertahan di kolektor
Q5 sehingga relay off dan switch dari relay tetap berada di kanan (off). Karena switch
yang berada di kanan maka tidak rangkaian yang bekerja.
Prinsip Rangkaian Pendingin air (NTC) :
Saat Suhu > 14 C
Saat suhu pada NTC lebih besar dari 14 derajat celcius, maka tegangan output dari NTC akan akan di hambat lagi dengan R21 yang diantara NTC dan R21 ini menghasilkan dropdown tegangan sebesar > 0.15V,
lalu tegangan di antara NTC dan R21 diumpankan kekaki input non
inverting amplifier U1 yang akan menyebabkan tegangan output U1 5 kali
tegangan input U1, selanjutnya tegangan output U1 (> 0.76 V) akan
menjadi base transitor Q7, yang mana tegangan base Q7 mengaktifkan VBE
transistor Q7 (harus lebih besar / sama dengan 0,76 V) sehingga
transistor Q7 hidup, karena transistor Q7 hidup maka arus dari supply ke
relay RL10 ke kolektor Q7 ke emitor Q7 lalu ke ground, karena adanya
arus yang mengalir di relay maka relay RL21 ON. Akibat relay ON maka
switch akan berpindah ke kiri yang akan menghungkan kutup positif
baterai ke peltier dan DC fan lalu ke kutup negatif batrai, sehingga peltier dan DC fan hidup.
Saat Suhu < 15 C
Saat suhu pada NTC kecil dari 15 derajat celcius, maka tegangan output dari NTC akan di hambat lagi dengan R21 yang diantara NTC dan R21 ini menghasilkan dropdown tegangan sebesar < 0.14V, lalu tegangan di antara NTC dan R21 diumpankan kekaki input non inverting amplifier U1 yang akan menyebabkan tegangan output U1 5 kali tegangan input U1, selanjutnya tegangan output U1 (< 0.72 V) akan menjadi base transitor Q7, yang mana tegangan base Q7 tidak akan cukup untuk mengaktifkan VBE transistor Q7 (harus lebih besar / sama dengan 0,76 V) sehingga transistor Q7 mati, karena transistor Q7 mati maka arus dari supply ke relay RL21 tertahan di kolektor Q3 sehingga relay RL3 off. Akibat relay off maka switch tetap di kanan yang akan menghungkan kutup positif baterai ke resistor ke LED lalu ke kutup negatif batrai, sehingga LED hidup.
6. VIDEO [KEMBALI]
7. DOWNLOAD FILE [KEMBALI]
LIBRARY IR
HTML
[RANGKAIAN Pendingin Air dan Keran Otomatis menggunakan NTC dan IR sensor-PROTEUS]
[VIDEO]
[DATA SHEET TEC1-12706(PELTIER)]
[DATA SHEET NTC]
[DATA SHEET BC547]
[DATA SHEET OPAMP]
Datasheet Resistor klik disini
Tidak ada komentar:
Posting Komentar